TCR gene therapy: clinical experience, toxicity and future perspectives

John Haanen

Park et al., Trends in Biotechnology 2011

Adoptive T-cell therapy

- Adoptive T-cell therapy for melanoma has proven efficacy
 - TIL (Dudley et al. Science 2002; Besser et al., Clin Cancer Res 2013; Joseph et al., Clin Cancer Res 2011; Pilon-Thomas et al., J Immunotherapy 2012; Donia et al., J Invest Dermatol 2013)
 - Peripheral blood derived T-cells Mackensen et al., J Clin Oncol 2006; Yee et al., PNAS 2002; Hunder et al., NEJM 2008; Wallen et al., Plos One 2009; Khammari et al. J Invest Dermat 2009; Verdegaal et al., Cancer Immunol Immunother 2011)

Why TCR gene therapy?

Alternative strategies for adoptive cell transfer as TIL therapy has limitations

- Presence of resectable metastasis is required
- TIL grow from ~80-90% of resected tumor samples
- Very patient-specific treatment
- Laborious and time-consuming
- Very difficult to obtain tumor-specific TIL from tumors other than melanoma

Aim to generate off-the-shelf reagents for many cancer patients

Gene-modified T cells

Genetically modified peripheral blood lymphocytes

Modified from: Restifo et al., Nature Rev Immunol (2012)

Transduction platforms for gene transfer

b Transposon-based vector

Clinical experience with TCR gene therapy

- 2006: MART-1 TCR gene therapy for melanoma
 - RR 13% (n=15)

(Morgan et al., Science 2006)

Cancer regression upon transfer of MART-1 TCR redirected T cells

Clinical experience with TCR gene therapy

- 2006: MART-1 TCR gene therapy
 - RR 13% (n=15)(Morgan et al., Science 2006)
- 2009: MART-1 and gp100 TCR gene therapy
 - RR 30% (MART-1 TCR; n=20)
 - RR 19% (murine gp100 TCR; n=16)
 (Johnson et al., Blood 2009)

DMF5 and gp100 specific TCR were highly expressed by transduced CD4 and CD8 T cells

Higher cytolytic activity of 2nd generation MDA-specific TCRs

ANTONI VAN LEEUWENHOEK

Clinical activity of MART-1 and gp100specific TCR gene therapy

Clinical experience with TCR gene therapy

- 2006: MART-1 TCR gene therapy
 - RR 13% (n=15)(Morgan et al., Science 2006)
- 2009: MART-1 and gp100 TCR gene therapy
 - RR 30% (MART-1 TCR; n=20)
 - RR 19% (murine gp100 TCR; n=16)
 (Johnson et al., Blood 2009)
- 2014: MART-1 TCR gene therapy + DC vaccination
 - Response in 11/14 (not according RECIST)
 - SD at 90 days in 50%(Chodon et al. Clin Cancer Res 2014)

Persistence of gene modified (noncryopreserved) cells after infusion

Clinical responses upon adoptive T-cell transfer

Pre- and post-treatment PET scans showing evidence of major tumor response and MART-1-specific TCR transgenic cell levels in patient F5-10

TCR gene therapy for melanoma

- 2006: MART-1 TCR gene therapy
 - RR 13% (n=15)(Morgan et al., Science 2006)
- 2009: MART-1 and gp100 TCR gene therapy
 - RR 30% (MART-1 TCR; n=20)
 - RR 19% (murine gp100 TCR; n=16)
 (Johnson et al., Blood 2009)
- 2014: MART-1 TCR gene therapy + DC vaccination
 - Response in 11/14 (not according RECIST)
 - SD at 90 days in 50%(Chodon et al. Clin Cancer Res 2014)
- 2012: MART-1 TCR gene therapy (Haanen et al. unpublished)

Clinical ACT program NKI-AVL

- TIL treatment melanoma
 - Current status: 10 patients treated in phase I/II feasibility trial
 - Future: Randomized multicenter phase III trial
 - TIL treatment vs ipilimumab as first or second line treatment
 - In collaboration with:
 - Herlev Hospital, Copenhagen (Inge Marie Svane & Marco Donia)
 - University of Manchester (Robert Hawkins & Ryan Guest)

- MART-1 TCR transduced T cells
 - Phase I/II trial in collaboration with Univ of Lausanne

TCR choice and expansion protocol

Design 1D3_{opt}**HMCys TCR construct**:

- 1D3 TCR recognizes MART-I 26-35 epitope (not affinity-matured)
- MP71 retroviral vector

α-human V α-mouse C
S S
β-human V β-mouse C

(Jorritsma & Gomez-Eerland et al. Blood 110(10):3564-72, 2007)

Potential toxicities of TCR gene therapy (I)

TCR choice and expansion protocol

Design 1D3_{opt}**HMCys TCR construct**:

- 1D3 TCR recognizes MART-I 26-35 epitope (not affinity-matured)
- MP71 retroviral vector

(Jorritsma & Gomez-Eerland et al. Blood 110(10):3564-72, 2007)

α-human V	α-mouse C					
	S S					
β-human V	β-mouse C					

Expansion IL-7/IL-15 + aCD3/aCD28 beads

- "Less differentiated" phenotype compared with IL-2 + aCD3 mAb
- Better engraftment in humanized mouse model (Kaneko et al. Blood 113(5): 1006-15, 2009)

Trial design

Patient group: Stage IIIc/IV melanoma

Clinical protocol: Simon 2-stage design phase I/II study

- Non-myeloablative chemotherapy cyclophosphamide/fludarabine
- T cell infusion (5x 10⁹ cells)
- Low-dose interleukin-2
 (2x10⁶ IU/once daily up to two weeks)

Clinical results so far...

- 3 patients have been treated
 - Patient 1 died at day 9 following T cell infusion

- Protocol was put on hold and was amended (100x fewer cells to be infused)
 - Two patients were treated
 - Patient 2: mixed response (PD)
 - Patient 3: 1st evaluation CT in 1 week

- 48 year old man
- Liver, cutaneous, kidney, lung and bone metastasis
- Heavily pretreated
- 5 x 10⁷ transduced cells

- No severe toxicity
- Stable levels of IL-6, LDH, CRP, pro-calcitonin (inflammation markers)
- Blood samples showed the presence of modified T cells

Calculation based on the amount of lymphocytes measured by the AKL/ ml and for ~ 5 L blood per person

- Regression of some subcutaneous metastases
- On CT-scan: progression of LN and bone metastases at 4 weeks after infusion
- 2 months after infusion: surgery because of pathological fracture: tumor material was negative for MART-1

- 75 year old woman
- Metastasis in lymph node, long, spleen and liver (positive for MART-1)
- History:
 - 2009: Diagnosed with metastatic melanoma
 - 2010: Dacarbazine
 - 2011: MART-1 DNA vaccine
 - 2011 stable disease
 - 2012 progressive disease MEK162
 - 2012 progressive disease inclusion M11TCR trial
 - TCR trial on hold because of patient 1
 - 2013 ipilimumab
 - 2014 progressive disease re-inclusion M11TCR trial

Infusion product

- 67% transduction efficiency
- 5x10⁷ transduced T cells
- 52% CD8

Expansion T cells in circulation

 Absolute number in blood (5L) is estimated to be 8x10⁷ on day 8

Clinical experience with TCR gene therapy

- 2006-2014: MART-1 and gp100 TCR gene therapy
- 2011: NY-eso-1 TCR gene therapy in melanoma and synovial sarcoma
 - RR 45% (n=11) and 67% (n=6)
 (Robbins et al., J Clin Oncol 2011)

Patient characteristics and outcome

Patient No.	Age (years)	Sex	Sites of Disease	Prior Treatment	No. of Cells (×10 ⁹)	No. of IL-2 Doses	% of CD3		NY-ESO-1 Tetramer Positive			Tumor Cell Targets (pg/mL IFN-γ)*		
							CD8		% of CD8		Vβ13.1 Positive (% of CD3)	NY-ESO-1 Positive	NY-ESO-1 Negative	Responset
Melanoma														
1	52	M	In	R, S, I	130	6	97	2	86	64	94	515	< 30	PR (8)
2	60	F	sc, lu	S, I	71	6	82	17	76	53	90	3,890	< 30	PD
3	30	F	bo, In, panc, sb	R, S, I	47	1	98	1	80	65	91	11,978	130	PD
4	56	M	lu, ki	R, S, I	50	7	91	9	80	74	94	11,230	< 30	CR (22+)
5	32	M	In	S, C, I	64	4	98	2	85	76	94	26,019	288	CR (20+)
6	38	M	In	S, I	51	7	93	7	87	79	94	28,907	536	PR (3)
7	47	M	In, lu	R, S, I	23	7	96	4	70	58	90	9,577	178	PD
8	39	F	In, br, lu	R, S, C, I	38	8	68	32	78	70	94	ND	ND	PD
9	51	F	lu, In, li	S, C, I	31	10	94	6	83	69	96	11,952	35	PD
10	61	M	In, Ii, spl, Iu, bo	R, S, C, I	16	8	84	16	79	56	92	16,063	49	PD
11	46	M	lu, li	R, S, I	37	6	93	7	63	58	85	5,795	< 30	PR (9+)
Synovial cell sarcoma														
12‡	20	M	lu, bo	R, S, C, I	83	5	82	8	77	64	91	10,065	117	PR (10)
13‡	37	F	lu	R, S, C	50	8	90	5	78	78	93	11,656	94	PR (18)
14‡	47	F	lu, In	R, S, C	56	8	89	11	81	76	91	10,836	50	PR (5)
15‡	19	M	lu	R, S, C, I	16	5	46	40	67	63	89	5,371	< 30	PD
16	30	M	pl, hi	S, C	59	5	92	8	74	57	88	6,512	199	PR (8)
17	40	M	pl, hi	R, S, C	52	5	81	18	78	69	92	8,098	< 30	PD

Robbins et al., J Clin Oncol 2011

Clinical responses

Clinical experience with TCR gene therapy

- 2006-2014: MART-1 and gp100 TCR gene therapy
- 2011: NY-eso-1 TCR gene therapy in melanoma and synovial sarcoma
 - RR 45% (n=11)(Robbins et al., J Clin Oncol 2011)
- 2009: CEA TCR gene therapy in colorectal cancer
 - Response in 2/3 patients (1 according RECIST)

(Parkhurst et al., Mol Therapy 2009)

Clinical experience with TCR gene therapy

- 2006-2014: MART-1 and gp100 TCR gene therapy
- 2011: NY-eso-1 TCR gene therapy in melanoma and synovial sarcoma
 - RR 45% (n=11)(Robbins et al., J Clin Oncol 2011)
- 2009: CEA TCR gene therapy in colorectal cancer
 - Response in 2/3 patients (1 according RECIST)
 (Parkhurst et al., Mol Therapy 2009)
- 2012 MAGE-A3 TCR gene therapy
 - Two independent trials were aborted due to unexpected toxicity

(Morgan et al., J Immunother 2013; Linette et al., Blood 2013)

Toxicity observed in TCR gene therapy trials

- DMF4: no toxicity reported
- DMF5 + gp100 TCR:
 - Skin rash (100%)
 - Uveitis (50% of DMF5 treated pts)
 - Hearing loss (Vogt-Koyanagi-Harada) 25%
- DMF5 + DC vaccination
 - Skin rash and cytokine release syndrome
- 1D3 TCR
 - Cytokine release syndrome (multi-organ failure)
 - Skin rash

On target toxicity in eye and inner ear

Johnson et al., Blood 2009

Recall whole body rash and re-expansion of the TCR transgenic cells in peripheral blood of patient F5-13 with subsequent MART-1/DC vaccination

Cytokine production by multiplex assay in plasma from patients F5-12 and F5-14 to study the potential development of a cytokine storm

Patient 1

- 43 year old female
- Bulky disease with two large abdominal metastases (16 and 18 cm)
- Multiple pulmonary, subcutaneous and lymph node metastases of 1-3 cm
- One small brain metastasis of 8mm
- Large volume (~10L) ascites

Infusion product: characteristics

- Transduction efficiency 61%
- 4.56x10⁹ transduced cells
- CD8+/CD4+ ratio 80/20
- Sterile
- Functional in vitro

Clinical course

- T cell infusion at day 0
- At day 1, patient developed high fever (>40°C)
- Blood positive for ESBL at day 1
- Patient treated with imipenem and vancomycin
- Stabilized during following days, no signs of sepsis
- Vancomycin discontinued at day 4
- Patient showed fluid retention
- No sign of on-target toxicity against MART-1

Clinical course

- Morning of day 6, not responding to verbal stimuli
- Fever of 39.5°C, high pulse (110/min)
- Antibiotic regimen changed to meropenem, vancomycin and amoxicillin
- Transport to ICU. Generalized tonal clonal convulsion.
- Cardiac arrest
- Intubated and resuscitated for 10 minutes
- Kept in coma
- CT scan showed brain edema and bleeding of lesion
- All cultures remained sterile (sputum, BAL, ascites, liquor)
- No meningitis
- No tumor lysis syndrome
- After 48 hours, sedation stopped, no neurological improvement → patient died on day 9 from multiple organ failure

Possible explanations

- 1. Bacterial sepsis
- 2. Cardiac arrest induced by heart failure/ hemorrhage
- 3. T cell related
 - a) Recognition other MHC-peptide complex
 - b) Cytokine release

Cytokine release in multiple organ failure patient 1 at NKI

Consecutive rise of IFN-γ and IL-6

Same profile BAL and ascites

1D3 TCR modified cells present in body fluids

Day 7

Post mortem examination

- Lymphocytic myocarditis with influx of CD3/CD8/ Granzyme B/MART-1 TCR⁺ cells
- Extensive infiltration of CD3/CD8/Granzyme B/MART-1 TCR+ cells in peritoneal metastases
- Minor T cell infiltration in other organs

Myocardium CD3

Metastases CD3

Patient 2: On-target activity

- Inflamed moles and a macular rash
- Vitiligo (depigmentation) of the skin

- → Biopsy of skin showed T cell infiltration
- → Local loss of melanocytes at inflammation site

II VAN LEEUWENHOEK

→ Vitiligo confirmed by Woods lamp

Small peak in IL-6 at time of skin rash and fever

ANTONI VAN LEEUWENHOEK

Skin reaction

- Skin rash
- Biopsy from normal skin

inflamed skin

Severe colitis in CEA TCR gene therapy

MAGE-A3 TCR gene therapy trials

- TCR recognizing HLA-A1 restricted MAGE-A3 peptide
 - Melanoma and multiple myeloma patient
 - Affinity of original TCR was improved (CDR3 region)

NI VAN LEEUWENHOEK

 Both patients developed hypotension and severe cardiac problems leading to death within 5 days after adoptive therapy

MAGE-A3 TCR gene therapy trials

- TCR recognizing HLA-A2 restricted MAGE-A3 peptide KVAELVHFL (shared with MAGE-A9
 - 9 cancer patients expressing MAGE-A3
 - Affinity modified TCR from murine origin
 - 3 out of 9 patients developed severe neuological symptoms
 - Epileptic seizures, mental disturbances
 - Infarcted areas on brain MRI
 - 2 patients died, 1 fully recovered

Brain damage on autopsy

White matter changes

Vacuolization

Areas of infarction

Cross-reactivity of HLA-A2/MAGE-A3 peptide specific TCR with low level MAGE-A12 expression in brain

- MAGE-A12 is expressed at low level in the brain, whereas MAGE-A3 is not
- MAGE-A3 TCR recognizes MAGE-A12 peptide
- Neurological toxicity may be caused by cross-reactivity of T cells with MAGE-A12 peptide in brain

ANTONI VAN LEEUWENHOEK

Future of TCR gene therapy

- Target choice?
- Which viral platform?
- Affinity modification?
- Suicide switch?
- Which cell type (T cell? Which T cell? NK cell?)
- How to activate and to expand?
- How many cells should we infuse?
- Deletion of endogenous TCR?
- Deletion of inhibitory receptors?
- Improve trafficking?

Acknowledgements

Department of Immunology

Raquel Gomez-Eerland

Annelies Jorritsma

Nienke van Rooij

Samira Michiels

Bianca Kaiser-Heemskerk

Pia Kvistborg

Sander Kelderman

Willeke van den Kasteele Trees de Jong Christian Blank

Ton Schumacher

Adriaan Bins

Pathology

Bart van der Wiel

CRA and **NP**

Loes Pronk Henk Mallo Sandra Adriaansz

<u>ICU</u>

Lenie Hulshoff

Centre Pluridisciplinaire d'Oncologie Lausanne, Switzerland

Serge Leyvraz Pedro Romero

Emanuela Romano Alexandre Harari

Immunocore

Namir Hassan
Dominque Smethurst
Bent Jakobsen

Sheba Medical Insitute

Michal Besser

Jakob Schachter

Surgery Branch, NIH

Mark Dudley

Steven Rosenberg

Slotervaart Pharmacy/AmBTU

Susanne Quaak Edith Vermeij Bas Beerman

Denise Serras Geraldes

Roel van Gijn

Joost van den Berg

Bastiaan Nuijen Jos Beijnen

Floor 4B with nursing staff
Clinical laboratory
FACS facility

Sanguin

NKI-KWF Research Fund

